Questions on Forces – Mark Scheme

1. (i) Expected answer:

'For equilibrium of an object the sum of clockwise moments about a point = sum of anticlockwise moments about the same point.'

clockwise moment(s) = anticlockwise moment(s)

Note: The term 'clockwise' to be included and spelled correctly to gain the M1 mark

Note: 'net moment = 0' is equivalent to the M1 mark

Reference to one of the moments taken about a point/'equilibrium'/sum (or total or net or Σ)

Note: If M1 is lost for incorrect spelling of 'clockwise', then allow this A1 mark

(ii) $200 \times 12 = F \times 75$

F = 32 (N)

mentioned once

Note: Bald answer of 32 (N) scores 2/2 marks

(iii) $p = \frac{32}{6.0 \times 10^{-5}}$

Possible ecf

pressure = 5.3×10^5 (Pa)

Note: Bald answer of 5.3×10^5 (Pa) scores 2/2 marks

(iv) (Pressure is) greater

B1

because the force/F is larger (to provide the same moment)

B1

[8]

M1

A1

2. The (distribution of the) mass of the lawn mower is (i) 1 not uniform **B**1 2. One correct moment about A stated $B \times 110 \text{ or } 350 \times 20$ **B**1 $B = (350 \times 20) / 110$ (moments equated) B1 B = 63.6 (N)A03. A = 350 - 63.6 = 286(.4) (N) **A**1 (ii) A goes down and B goes up **B**1 Turning effect of B is less / B needs greater force to produce the same moment / if distance goes down force needs to go up (to maintain the same turning effect) **B**1 [6] 3. (i) 1 $3600 \times 1.0 = X \times 2.5$ C2one mark for one correct moment, one mark for the second correct moment and equated to first moment A0 2 X = 1440 (N)C1 Y = 3600 - 1440or $3600 \times 1.5 = Y \times 2.5$ **A**1 = 2160 (N)**B**1 (ii) Not a couple as forces are not equal B1 and not in opposite directions / the forces are in the

(iii) P = F / A B1 = 1440 / 2.3 × 10⁻² B1 = 62609 (6.3 × 10⁴)

unit Pa or N m⁻²

[9]

4. (Force is 1 N) when a <u>1 kg</u> mass has an acceleration of <u>1 m s</u>⁻

same direction

Not: '1 kg and 1 m \underline{s}^{-1} ', Allow: (1 N =) $\underline{1 \text{ kg}} \times \underline{1 \text{ m s}^{-2}}$

B1 [1]

C1

5. (i) Kinetic energy =
$$\frac{1}{2}$$
 m v²

$$=\frac{1}{2} 1380 \times (31.1)^2$$
 C1

$$= 667375 (J) (667 kJ)$$

$$6.7 \times 10^5 \, (J)$$

(ii)
$$v^2 = u^2 + 2as$$

$$0 = (31.1)^2 + 2 \times a \times 48.2$$

$$a = 10.0(3) \text{ (m s}^{-2})$$

(iii)
$$F = ma$$
 or $work = force \times distance$

$$= 1380 \times 10.03$$

$$F = 667375 / 48.2$$

$$= 13800 (13846) (N)$$

$$= 13800 (13846) (N)$$

[7]

6. Four from:

Prevents the driver from hitting the steering wheel / windscreen

Deflates quickly to prevent whiplash

Increases the time/distance to stop

Decreases the (impact) force on the driver

Much wider area of the bag reduces the pressure

 $B1 \times 4$

[4]

7. Any two factors from:

speed, mass, condition of tyres, condition of brakes, condition of road, gradient of road

Allow: KE if neither mass nor speed is mentioned.

B1×2

For each factor, correct description of how braking distance is affected

E.g:

- Greater speed means greater distance
 Or distance ∞ speed² (ora)
- Greater mass means greater distance
 Or distance ∞ mass (ora)
- Worn tyres / brakes implies less friction therefore greater distance (ora)
- Wet / slippery / icy road means less friction therefore greater distance (ora)
- Uphill means shorter distance (ora)

For description marks, reference to 'distance' instead of 'braking distance' is fine

For 1st bullet point allow reference to kinetic energy

Allow: 'more' or 'longer' instead of 'greater' when referring to distance

Do not allow 'grip' for friction for 3rd and 4th bullet points

 $B1\times2$

[4]

8. 1. (Several) <u>satellites</u> used

B1

2. Distance from (each) satellite is determined

B1

 Position / distance is determined using c / speed of e.m waves / radio waves / microwaves and delay time (wtte)

B1

4. Trilateration is used to locate the position of the car

Or position of car is where circles / spheres cross (wtte)

Note: The term 'satellite(s)' to be included and spelled correctly, on all occasions, to gain this first (or second) B1 mark (Deduct this mark only <u>once</u>.)

Do not allow this 4th mark for just a diagram of intersecting spheres / circles

B1

[4]

9. (a)
$$W = mg$$

Allow: Use of 9.8 (
$$m \, s^{-2}$$
)

weight =
$$1.50 \times 9.81 = 14.72$$
 (N) or 14.7 (N) or 15 (N)

Allow: Bald 15 (N); but **not** '1.50
$$\times$$
 10 = 15(N)'

B1

(b) (i) Net / resultant force (on **B**) is less / (net) force (on **B**) is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on **B**)

Note: Must have reference to force

B1

(ii)
$$s = ut + \frac{1}{2}at^2 \text{ and } u = 0$$

C1

$$1.40 = \frac{1}{2} \times 1.09 \times t^2$$

Allow: 2 marks for 1.75/1.09' if answer from (iii) is used

C1

$$t = 1.60$$
 (s)

Allow: 2 sf answer

Allow: 2 marks if **2.80 m** is used; time = 2.27 (s)

A1

(iii)
$$v^2 = 2 \times 1.09 \times 1.40 / v = 0 + 1.09 \times 1.60$$

Possible ecf

C1

$$v = 1.75 \text{ (m s}^{-1}) / v = 1.74 \text{ (m s}^{-1})$$

Allow: 1.7 or 1.8 $(m s^{-1})$

A1

(iv) change in velocity =
$$2.47 + 1.50 = 3.97 \text{ m s}^{-1}$$
)

Ignore sign for change in velocity

C1

acceleration =
$$\frac{3.97}{0.030}$$

acceleration = $132 \text{ (m s}^{-2})$

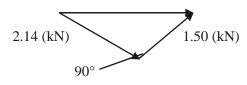
Allow: $130 (m s^{-2})$

Special case:

$$acceleration = \frac{2.47 - 1.50}{0.030}$$
 or 32 (m s⁻²) scores 1 mark

10. The <u>mass</u> of particles increases (at its speed gets closer to the speed of light)

Not: 'weight of particle increases' Not: 'mass changes / different'


B1

A1

[1]

[9]

11. (i) Correct vector triangle drawn

B1

Note:

Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90°. The 'orientation' of the triangle is not important. The directions of all three arrows are required

$$(resultant force)^2 = 2.14^2 + 1.50^2$$

C1

A1

(resultant force) = 261 (kn)

Allow: 2 sf answer of 2.6 (kN)

Allow a scale drawing; 2 marks if answer is within ± 0.1 kN and 1 mark if ± 0.2 kN

Alternative for the C1 A1 marks:

 $1.50\cos(55) \text{ or } 2.14\cos(35)$

 $resultant\,force = 1.50cos(55) + 2.14cos(35)$

resultant force = 2.61 (kN) A1

(ii) 2.6(1) (kN)

Possible ecf

B1

(Constant velocity implies) zero net force / zero acceleration

Not: 'resultant force = drag' since the first B1 assumes this

B1

[5]

- **12.** Any three from:
 - 1. (Suspend plate from a point and then) mark a vertical line on the plate (wtte)
 - 2. Plumb line / 'pendulum' (used to find the vertical line)
 - 3. Hang from another point / place (and draw another vertical line) (wtte)
 - 4. Where the lines intersect gives position of centre of gravity (wtte)

Note: For 1st point accept 'mark line of string'

Allow: 1 mark for 'By trial and error find a position where the plate balances'

 $B1 \times 3$

[3]

13. (i) net force = 120 (N)

C1

$$a = \frac{120}{900}$$

$$a = 0.13 \text{ (m s}^{-2}\text{)}$$

Note: Bald answer scores 2 marks; answer must be 2 sf or more

A1

(ii) The drag force changes with speed / acceleration is not constant

B1

[3]